
BCS 371
Mobile Application

Development I
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Back Stack Overview

 Compose - NavHost

© 2024 Arthur Hoskey. All
rights reserved.

Back Stack Overview

Back Stack Overview

 The app keeps track of its navigation state using a
back stack.

 The back stack basically contains a stack of places
where the app has navigated from.

 Essentially, it keeps track of how it got to the current
screen.

 The back stack operates in a last in first out manner
(LIFO).

© 2024 Arthur Hoskey. All
rights reserved.

Back Stack Flow

Back Stack Flow

 Every time the app navigates to a new screen it
pushes a new entry on to the back stack.

 When the app navigates back to the previous screen
it pops an entry off the back stack.

© 2024 Arthur Hoskey. All
rights reserved.

Back Stack Flow Example

Back Stack Flow Example

 Assume there is a food delivery app with the following
screens:

 Main screen – Shows a list of different restaurants.

 Restaurant screen – Shows a list of food you can
order from a restaurant.

 Item screen – Allows user to view a food item and
add it to their order cart.

 Cart screen – View items in cart and place order.

© 2024 Arthur Hoskey. All
rights reserved.

Back Stack Flow Example

Back stack is empty before the user starts the app.

Back Stack

empty

© 2023 Arthur Hoskey. All
rights reserved.

Back Stack Flow Example

User starts app and is at the MainScreen.

A back stack entry for MainScreen is pushed on to the back stack.

The current screen is always at the top of the back stack.

© 2023 Arthur Hoskey. All
rights reserved.

Back Stack

MainScreen

Back Stack

MainScreen
Top

Of

Stack

Back Stack

empty

Before Push After Push

Back Stack Flow Example

User navigates to RestaurantScreen.

Push back stack entry for RestaurantScreen on to the back stack.

© 2023 Arthur Hoskey. All
rights reserved.

Back Stack

MainScreen

Back Stack

MainScreen

Top

Of

Stack

Back Stack

Before Push After Push

MainScreen

Restaurant
Screen

Restaurant
Screen

Back Stack Flow Example

User navigates to ItemScreen.

Push back stack entry for ItemScreen on to the back stack.

© 2023 Arthur Hoskey. All
rights reserved.

Back Stack

MainScreen

Back Stack

MainScreen

Top

Of

Stack

Back Stack

Before Push After Push

MainScreen

Restaurant
Screen

Restaurant
Screen

Restaurant
Screen

Item
Screen

Item
Screen

Back Stack Flow Example

User adds the item to the cart (by pressing an "Add to Cart" button) and is
automatically sent back to the restaurant screen.

Pop the top entry off the back stack to return to the previous screen.

Back Stack

© 2023 Arthur Hoskey. All
rights reserved.

MainScreen

Restaurant
Screen

Item
Screen

Back Stack

MainScreen

Restaurant
Screen

Item
Screen

Back Stack

MainScreen

Top

Of

Stack

Restaurant
Screen

Before Pop After Pop

Back Stack Flow Example

User navigates to ItemScreen for a different item.

Push back stack entry for ItemScreen on to the back stack.

© 2023 Arthur Hoskey. All
rights reserved.

Back Stack

MainScreen

Back Stack

MainScreen

Top

Of

Stack

Back Stack

Before Push After Push

MainScreen

Restaurant
Screen

Restaurant
Screen

Restaurant
Screen

Item
Screen

Item
Screen

Back Stack Flow Example

User decides not to add that item and presses the device's back button.

Pushing the device's back button will cause the app to pop the top entry off
the back stack (app returns to RestaurantScreen).

Back Stack

© 2023 Arthur Hoskey. All
rights reserved.

MainScreen

Restaurant
Screen

Item
Screen

Back Stack

MainScreen

Restaurant
Screen

Item
Screen

Back Stack

MainScreen

Top

Of

Stack

Restaurant
Screen

Before Pop After Pop

Back Stack Flow Example

User navigates to CartScreen to place order.

Push back stack entry for CartScreen on to the back stack.

© 2023 Arthur Hoskey. All
rights reserved.

Back Stack

MainScreen

Back Stack

MainScreen

Top

Of

Stack

Back Stack

Before Push After Push

MainScreen

Restaurant
Screen

Restaurant
Screen

Restaurant
Screen

Cart
Screen

Cart
Screen

Back Stack Flow Example

User presses the "Place order button" and is automatically sent back to the
RestaurantScreen.

Back Stack

© 2023 Arthur Hoskey. All
rights reserved.

MainScreen

Restaurant
Screen

Cart
Screen

Back Stack

MainScreen

Restaurant
Screen

Cart
Screen

Back Stack

MainScreen

Top

Of

Stack

Restaurant
Screen

Before Pop After Pop

Back Stack Flow Example

User presses the device's back button.

Back Stack

© 2023 Arthur Hoskey. All
rights reserved.

MainScreen

Restaurant
Screen

Back Stack

MainScreen

Restaurant
Screen

Back Stack

MainScreen

Top

Of

Stack

Before Pop After Pop

Back Stack Flow Example

User presses the device's back button.

Back Stack

© 2023 Arthur Hoskey. All
rights reserved.

MainScreen

Back Stack

MainScreen

Back Stack

empty

Before Pop After Pop

Navigation and NavHost

 Now on to navigation and NavHost…

© 2024 Arthur Hoskey. All
rights reserved.

Navigation

Navigation

 Most apps will have multiple screens in the UI.

 Jetpack Compose Navigation allows you to work with those
screens.

 You will need to add the following Gradle dependency to
the Gradle (app) file (make sure to Sync the Gradle file):

implementation("androidx.navigation:navigation-compose:2.8.5")

Check the following link for the latest dependency version:

https://developer.android.com/develop/ui/compose/navigation

© 2024 Arthur Hoskey. All
rights reserved.

https://developer.android.com/develop/ui/compose/navigation

Navigation Components

Navigation Components

 NavHost – Container for navigation. It links the
NavController to the NavGraph.

 NavController – Used to navigate between destinations.
It maintains the back stack of screens.

 NavGraph – Specifies the destinations in the app.

© 2024 Arthur Hoskey. All
rights reserved.

Setup NavHost - Overview

Setup NavHost - Overview

1. Create screen composable functions (one for each screen in app). If
you are using a NavigationBar then each screen function takes no
parameters otherwise you should pass a NavController as a
parameter to the screen functions (the following slides assume no
NavigationBar).

2. Create Nav() composable function to setup the NavHost.

3. Update MainActivity.onCreate to call Nav().

The app will call functions in the following sequence:

© 2024 Arthur Hoskey. All
rights reserved.

MainActivity.
onCreate

Calls

Nav()

Nav() MainScreen(
navController)

Initializes

NavHost

NavHost will

navigate to its

starting

destination

(MainScreen)

1. Screen Function - mainScreen

1a. Screen Function - mainScreen

 Create a Kotlin file named MainScreen.kt.

 In this example there is one button that is used to navigate to the
other screen.

@Composable

fun MainScreen(navController: NavHostController, modifier: Modifier) {

 Column {

 Text(text = "Main Screen")

 Button(onClick={

 navController.navigate("OtherScreen")

 })

 {

 Text("Go to other screen")

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Call navigate when the button is

pressed. Navigate must get a route

as a parameter. The route is

"OtherScreen" in this example.

Each call to the navController's

navigate() function pushes the

given destination to the top of the

stack.

This route name must have already

been defined inside the NavHost.

Pass in the NavHostController

1. Screen Function - Other Screen

1b. Screen Function - otherScreen

 Create a Kotlin file named OtherScreen.kt

 There is one button to navigate back to the main screen.

@Composable

fun OtherScreen(navController: NavHostController, modifier: Modifier)

{

 Column {

 Text(text = "Other Screen")

 Button(onClick={

 navController.popBackStack()

 })

 {

 Text("Go back to main screen")

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Call popBackStack to navigate

back to the previous screen.

If we had defined other

screens, we could have

navigated to one of those

instead using the navigate

function.

Pass in the NavHostController

2. Function – nav (Setup NavHost)

2. Function – Nav() (Setup NavHost)

 Create a Kotlin file named Nav.kt.

 The route parameter (for composable) identifies the screen. The navController's
navigate method takes a route as a parameter.

 Create a Kotlin file named Nav.kt and add the following:

@Composable

fun Nav(modifier: Modifier) {

 val navController = rememberNavController()

 NavHost(navController=navController, startDestination = "MainScreen", modifier) {

 composable(route="MainScreen") {

 MainScreen(navController, modifier)

 }

 composable(route="OtherScreen") {

 OtherScreen(navController, modifier)

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

The composable function

adds a destination to the

NavHost's NavGraph.

(assumes MainScreen

and OtherScreen have

been defined).

Each composable has a

route which identifies it

as a destination.

Set the starting

screen

Create NavController

The MainScreen(navController) and

OtherScreen(navController) functions can be coded

to NOT take the NavController as a parameter

NavGraph

3. Update MainActivity.onCreate

3. Update MainActivity.onCreate

 Should call the Nav() composable function.

 For example:

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 enableEdgeToEdge()

 setContent {

 TestNavHostWithScaffoldTheme {

 Scaffold(modifier = Modifier.fillMaxSize()) { innerPadding ->

 Nav(Modifier.padding(innerPadding))

 }

 }

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Navigate to Different Screens

Navigate to Different Screens

 Use the NavController's navigate method to navigate to a
different screen.

 For example:

navController.navigate("OtherScreen")

navController.popBackStack()

© 2024 Arthur Hoskey. All
rights reserved.

navigate() takes a route as a parameter.

The route is "OtherScreen" in this

example. Each call to the navController's

navigate() function pushes the given

destination to the top of the stack.

This route name must have already been

defined inside the NavHost's NavGraph.
Assumes that

navController has been

declared and that it has the

type NavHostController

"OtherScreen" is a route

that has been defined in

the NavHost's NavGraph

Use popBackStack() to navigate to

the previous screen

Pass Arguments Between Screens

 Now on to passing arguments between
screens…

© 2024 Arthur Hoskey. All
rights reserved.

Pass Arguments Between Screens

Pass Arguments Between Screens

 One way to pass data is to add parameters to the route for the
screen.

 Do the following:

1. Update NavHost entry for the destination screen.
A. Add a place holder argument for the data to the route. String is the default

type for these arguments. To pass a type other than string you can use
navArgument to specify it.

B. Extract parameter from the route and pass that parameter to the screen
function call.

2. Update the screen function to take an additional parameter for
the data being passed.

3. When calling navigate pass the data as part of the route.

The example on the following slides passes data from MainScreen to
DataScreen.

© 2024 Arthur Hoskey. All
rights reserved.

1. Add Placeholder Argument to
Route

1. Update NavHost Entry

A. Add parameters to the route for the screen.

B. Extract parameter from route.
NavHost(navController=navController, startDestination = "MainScreen", modifier)
{

 // Other screens here

 composable(route="DataScreen/{data}") {

 val param = it.arguments?.getString("data")

 if (param != null) {

 DataScreen(navController, param, modifier)

 }

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Add placeholder to the route (data

is the name of the placeholder)

Extract parameter (use

placeholder named data

in this example. The only

argument passed to the

lambda is a

NavBackStackEntry (this

goes in "it"). Extract the

data parameter from the

NavBackStackEntry

using "it".Call screen function

passing in the parameter

2. Update Screen Function

2. Update Screen Function

 Add a parameter to take the data.

@Composable

fun DataScreen(navController: NavHostController, data: String, modifier: Modifier)

{

 // Use data parameter in the composable function here

}

© 2024 Arthur Hoskey. All
rights reserved.

Add parameter to the

screen function header

3. Pass Data with Route

3. Pass Data with Route

 Pass data as part of the route in the call to navigate.

 When the button is clicked it navigates to DataScreen.

@Composable

fun MainScreen(navController: NavHostController, modifier: Modifier) {

 var dataToPass = "abc"

 Button(onClick={

 navController.navigate("DataScreen/$dataToPass")

 })

 {

 Text("Go to data screen")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

The value in the dataToPass

variable will be appended to

the end of the route

$ means to treat

what follows as a

variable name

Pass Int Data (use navArgument)

Pass Int Data (use navArgument)

@Composable

fun DataScreenTakesInt(navController: NavHostController, dataInt: Int, modifier: Modifier) {

 // Screen code goes here

}

composable(

 route="DataScreenTakesInt/{data}",

 arguments = listOf(navArgument("data") { type = NavType.IntType })

) {

 val param = it.arguments?.getInt("data")

 if (param != null) {

 DataScreenTakesInt(navController, param, modifier)

 }

}

navController.navigate("DataScreenTakesInt/$dataToPassInt")

© 2024 Arthur Hoskey. All
rights reserved.

Screen method takes an

Int parameter

Get parameter

data as an Int

Use a navArgument to

specify an int type for the

parameter (in NavHost)

Int variable pass as argument

to navigate (in screen you are

navigating from)

Pass Data Back to the Previous
Screen

 Now on to passing data back to the
previous screen…

© 2024 Arthur Hoskey. All
rights reserved.

Pass Data Back to the Previous
Screen

Pass Data Back to Previous Screen

 Assume you have a data entry screen, and you need to pass that data back to
the previous screen.

 You can do this using the back stack. Specifically, you put the data to pass
back into the previous screen's back stack entry.

 That back stack entry can be accessed by the previous screen. The previous
screen goes into its back stack entry and retrieves the data.

 Do the following:

1. In EnterDataScreen. Add key/value pairs of data to return to the previous
back stack entry. Use savedStateHandle to save the data in the back stack
entry.

2. In MainScreen. Retrieve the key/value pairs from MainScreen's back stack
entry (will be on top of the back stack at this point). Use savedStateHandle to
retrieve the data from the back stack entry.

© 2024 Arthur Hoskey. All
rights reserved.

Pass Data Back to the Previous
Screen Example

Pass Data Back to Previous Screen Example

 The sequence of events proceeds as follows:

1. MainScreen navigates to EnterDataScreen.

2. User enters data when in EnterDataScreen.

3. User presses button to finish data entry and go back to previous
screen. It should save the data in the previous screen's back
stack entry (that is MainScreen's back stack entry). It should pop
the back stack after saving the data to the back stack entry.

4. MainScreen retrieves the data from its back stack entry.

© 2024 Arthur Hoskey. All
rights reserved.

Passing Data and Back Stack

Before going back to MainScreen, EnterDataScreen saves the data to return
in the previous back stack entry (MainScreen's back stack entry).

The user presses the "Done button" on EnterDataScreen and stores the
key/value pair in the previous back stack entry (assume user typed "abc").

MainScreen then accesses the current back stack entry to get the key/value
pair.

© 2023 Arthur Hoskey. All
rights reserved.

Back Stack

EnterDataScreen

MainScreen
"my_data"->"abc"

Previous

back Stack

Entry

Back Stack

MainScreen
"my_data"->"abc"

Top of Stack

(current back

stack entry)

Top of Stack

(current back

stack entry)

Pass Data Back to the Previous
Screen Example - enterDataScreen

Pass Data Back to Previous Screen Example - EnterDataScreen

 Use the navController to access the back stack.

@Composable

fun EnterDataScreen(navController: NavHostController, modifier: Modifier) {

 var data by rememberSaveable { mutableStateOf("") }

 // Other code to fill the data variable with a value to be send back should be added

 Button(onClick={

 navController.previousBackStackEntry?.savedStateHandle?.set("my_data", data)

 navController.popBackStack()

 })

 {

 Text("Done")

 }

}

© 2024 Arthur Hoskey. All
rights reserved.

Save data as a key/value

pair into the previous

screen's back stack entryPop the back stack to

navigate back to the

previous screen

Pass Data Back to the Previous
Screen Example - mainScreen

Pass Data Back to Previous Screen Example - MainScreen

 Use the navController to access the back stack.

@Composable

fun MainScreen(navController: NavHostController, modifier: Modifier) {

 var data=navController.currentBackStackEntry?.savedStateHandle?.get<String>("my_data")

 // Code to use data in the UI goes here

}

© 2024 Arthur Hoskey. All
rights reserved.

Get the value from the current

back stack entry (MainScreen's

back stack entry)

The data variable will

contain the data sent back

from EnterDataScreen.

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: BCS 371 Mobile Application Development I
	Slide 2: Today’s Lecture
	Slide 3: Back Stack Overview
	Slide 4: Back Stack Flow
	Slide 5: Back Stack Flow Example
	Slide 6: Back Stack Flow Example
	Slide 7: Back Stack Flow Example
	Slide 8: Back Stack Flow Example
	Slide 9: Back Stack Flow Example
	Slide 10: Back Stack Flow Example
	Slide 11: Back Stack Flow Example
	Slide 12: Back Stack Flow Example
	Slide 13: Back Stack Flow Example
	Slide 14: Back Stack Flow Example
	Slide 15: Back Stack Flow Example
	Slide 16: Back Stack Flow Example
	Slide 17: Navigation and NavHost
	Slide 18: Navigation
	Slide 19: Navigation Components
	Slide 20: Setup NavHost - Overview
	Slide 21: 1. Screen Function - mainScreen
	Slide 22: 1. Screen Function - Other Screen
	Slide 23: 2. Function – nav (Setup NavHost)
	Slide 24: 3. Update MainActivity.onCreate
	Slide 25: Navigate to Different Screens
	Slide 26: Pass Arguments Between Screens
	Slide 27: Pass Arguments Between Screens
	Slide 28: 1. Add Placeholder Argument to Route
	Slide 29: 2. Update Screen Function
	Slide 30: 3. Pass Data with Route
	Slide 31: Pass Int Data (use navArgument)
	Slide 32: Pass Data Back to the Previous Screen
	Slide 33: Pass Data Back to the Previous Screen
	Slide 34: Pass Data Back to the Previous Screen Example
	Slide 35: Passing Data and Back Stack
	Slide 36: Pass Data Back to the Previous Screen Example - enterDataScreen
	Slide 37: Pass Data Back to the Previous Screen Example - mainScreen
	Slide 38: End of Slides

